
 SONICMQ — THE ROLE OF JAVA MESSAGING
AND XML IN ENTERPRISE APPLICATION INTEGRATION

Progress Software Corporation

October 1999

SonicMQ — The Role of Java Messaging
and XML in Enterprise Application Integration — Progress Software Corporation
is published by Hurwitz Group, Inc.
111 Speen Street, Framingham, MA 01701
Telephone (508) 872-3344; Fax (508) 872-3355
Email address: info@hurwitz.com
Web site: http://www.hurwitz.com

October 1999

Copyright 1999, Hurwitz Group, Inc.
All rights reserved. No part of this report may be reproduced
or stored in a retrieval system or transmitted in any form or
by any means, without prior written permission.

CONTENTS

EXECUTIVE OVERVIEW..V

INCREASING DEMANDS

ON ENTERPRISE-LEVEL COMPUTING..1

Messaging Requirements for Supporting e-Business1

Distributed Computing and Implications for Data Exchange2

Communication and Messaging Services ...2

PROGRESS SONICMQ™ ...7

Differentiators ..8

The Progress Road Map ...9

CASE STUDY: CHANNELINX.COM... 10

CONCLUSION... 11

Progress Software Corporation

© 1999 Hurwitz Group, Inc. v

EXECUTIVE OVERVIEW

Enterprise applications must meet demanding requirements: performance, reliability, flexibility, and

ease of use. Information must be integrated from disparate, loosely coupled systems — both

within a business and between businesses (B2B) to support electronic business. Doing business

over the Internet demands high performance, low latency, and reliable data exchange across large

networked systems within the enterprise and B2B.

What’s needed is a message-oriented middleware (MOM) solution that can support the following:

§ A high-level applications interface (API)

§ Quality of service (QoS) guarantees

§ (Near) real-time application integration

§ Event-driven processing

§ Security

§ Management of message traffic

The Java Message Service (JMS) can provide the API and basic messaging services (e.g.,

message queuing, publish/subscribe). But to deliver a complete infrastructure that will meet

MOM requirements for enterprise application integration (EAI) and e-Business, vendors will

need to extend the JMS specification and add capabilities for security, QoS, system

administration, and workload distribution. To promote data exchange between disparate systems,

support for additional data formats, especially XML, is also desirable.

This white paper explores these requirements and shows how one vendor, Progress Software, is

providing a solution through its JMS-compliant SonicMQ product.

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 1

INCREASING DEMANDS ON ENTERPRISE-LEVEL COMPUTING

Today’s enterprise-level systems have evolved from older stovepiped systems (standalone

applications that do not integrate with or share data or resources with other applications). By their

nature, standalone business systems do not interoperate, and they therefore create the additional

problem of needing to duplicate business data. Standalone systems make it difficult to view the

same data from different perspectives, for example, to recognize patterns in customer and vendor

behavior, or to bring information together about customers and vendors (buyers and sellers). Even

client/server (C/S) systems, which can support integration within a single department or

organization, make it difficult to exchange information across department boundaries.

The Internet has forced a change in this picture. The Internet has promoted the globalization of

business and made it critical to interconnect corporate offices and organizations. Both data and

business processes need to be shared. Infrastructure services need to be consolidated and

centrally managed. Business logic needs to be reused, changed quickly, and redeployed. The

diversity of enterprise-level systems and their distribution across geographical boundaries demand

open services, APIs, and protocols to exchange data efficiently.

MESSAGING REQUIREMENTS FOR SUPPORTING E-BUSINESS

Success in this new competitive environment is directly linked to a company’s ability to make it

easier and more profitable for customers, suppliers, and partners to do business with it. This ability

will depend on a company’s computer-based support for information handling. At the most

fundamental level, the primary technical challenge of e-Commerce is routing messages reliably to

and from the appropriate systems. Messaging middleware products, with software that provides

an interface between applications, allow systems to send data back and forth to each other

asynchronously. Messaging-oriented middleware (MOM) can coordinate the message traffic

between components of distributed systems by providing lower-level, but still mission-critical,

services such as message queuing, QoS guarantees, and transaction support.

To an e-Business vendor, effective MOM ultimately assures that information flow is fast and

reliable between systems that take incoming orders and those systems that handle order fulfillment

and accounting.

DISTRIBUTED COMPUTING AND IMPLICATIONS FOR DATA EXCHANGE

Commonly used methods for exchanging information between two applications include peer-to-

peer and Remote Procedure Calls (RPCs), CORBA, COM, and RMI. These methods have had

their place in tightly coupled computing models; CORBA and COM both bind distributed objects

tightly together. Tight coupling itself introduces further problems; for example, it is harder to make

SonicMQ — The Role of Java Messaging and XML in Enterprise Application Integration

2 © 1999 Hurwitz Group, Inc.

changes in one component without introducing side effects in others, and version change and

version tracking become a headache. These methods also require information to be reduced to a

block of data before the data is passed. And data blocks are by themselves not self-describing.

Developers must embed descriptions of data structure and content in the code — this means

longer development times, extra lines of code, and large portions of code devoted to validating

information contained in the data.

Distributed architectures also introduce problems for components that must communicate because

components can fail in several ways by:

§ Going offline without warning

§ Terminating unexpectedly

§ Not responding to a request quickly enough

Messaging services, especially MOM and JMS, are designed to address these problems.

COMMUNICATION AND MESSAGING SERVICES

Middleware

Middleware is connectivity software. It has often been called the “glue” that provides for

communication across heterogeneous platforms. Middleware consists of enabling services that let

processes running on diverse machines interact across a network. Middleware has enabled

interoperability for C/S architectures. DCE, CORBA, and COM are all widely-used middleware

frameworks.

Message-Oriented Middleware (MOM)

MOM is a specialized class of middleware that extends process-to-process communication in a

distributed environment. It provides message passing or message queuing services and uses

queuing to support asynchronous communications (i.e., client messages are sent to a queue until

retrieved). The advantage of this scheme is that the receiver can be offline when the message is

sent. The order for retrieving messages from a queue is open. Hence, MOM can be used with

load-balancing and prioritization schemes for message delivery. With MOM, fault tolerance can be

provided because persistent queues let messages be recovered in the event of system failure.

§ MOM is preferred to other communications services, especially RPCs, for corporate intranet

and web-based messaging (see Figure 1). MOM is primarily used to support deferred

communication, whereas peer-to-peer and RPCs are used to support synchronous

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 3

communication. With RPC, the receiver must be online. But with MOM, the sender can send

messages to receivers (e.g., servers) that are down at the time the message is sent.

§ MOM decouples resources. It promotes building loosely coupled systems and thus helps

developers build highly modular systems. Component reuse and reliability are increased in so

far as a failure in one component is less likely to affect another.

§ MOM views messages as events rather than as method calls (RPCs). Clients can send and

receive events (messages) via APIs that MOM provides. Applications or application

components communicate with each other using MOM.

MOM

Client

MOM

[Application logic]

MOM vs. RPC

ServerClient

Publish
Message

Notification of
Message

MOM Message Broker

RPC (CORBA)

Client

[Application logic]

server.method ():

ORB (stub)

Client

server.method ():

ORB (stub)

CORBA Server Object

Client

ORB

S
K
E
L
E
T
O
N

App logic

method () {

// …

 }

.

Figure 1. MOM vs. RPC

SonicMQ — The Role of Java Messaging and XML in Enterprise Application Integration

4 © 1999 Hurwitz Group, Inc.

The Java Messaging Service (JMS)

The JMS is an API for accessing enterprise messaging systems. The JMS specification defines

an interface but does not itself define an implementation. The specification is vendor neutral — it

sets requirements but does not dictate how they are to be implemented. This means that it is up to

the vendor to add facilities, services, or enhancements not included or defined explicitly in the

specification.

§ JMS does not include load balancing/fault tolerance, error/advisory notification, administration,

or security. These facilities are, of course, the “must-haves” for corporate intranet and B2B

communications with e-Commerce. Vendors can differentiate themselves by adding just these

functions to their JMS implementations.

JMS provides two different messaging paradigms:

§ Point-to-point (PTP). The destination in this paradigm is called a “queue.” This domain

allows for synchronous message delivery (see Figure 2).

§ Publish/subscribe. The destination in this domain is called a “topic.” This domain allows for

asynchronous message delivery (see Figure 3).

Sender Listener

message

Point-to-Point Message

Figure 2. Point-to-point messaging

Publisher

message

Event-Driven Publish/Subscribe Interaction

Subscriber BSubscriber A Subscriber C

Figure 3. Publish/subscribe messaging

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 5

Table 1 lists interface names for each domain.

JMS Parent PTP Domain Pub/Sub Domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReveiver, QueueBrowser TopicSubscriber

Table 1. Interface names for JMS domains1

Extensible Markup Language (XML)

Like MOM, XML is helping the enterprise move away from tightly coupled computing

environments. XML is an ISO-compliant subset of Standard Generalized Markup Language

(SGML) and was approved as a meta language specification by the World Wide Web Consortium

(W3C) in 1998.

XML provides a general syntax for describing hierarchical data. It is both machine-understandable

and human-readable. It can be used to describe data within a wide range of contexts (document

publishing, databases, e-Commerce, Java-based applications), as discussed below.

§ Documents and distributed processing. XML is extensible in the sense that it is a meta

language. In the context of documents, this means that a document developer (author) can

write a Document Type Definition (DTD). A DTD is a domain-specific grammar written in

XML for a specific type of document, such as a purchase order. The grammatical rules in a

DTD in turn make it possible for the document receiver to interpret the document

appropriately.

For rendering documents/pages on the Web, client-side XML offers web designers more

control and flexibility than using HTML. XML lets designers separate content from

presentation. Style sheets can be created to describe presentation, and the client browser

applies the style sheet to the XML document and renders the display.

XML also lets developers use custom-designed tags for describing documents. Tags function

as identifiers to signal the beginning and end of a related block of data. Using tags, developers

can create a hierarchy of related data components. With document tagging, XML can help

1 Sun Microsystems, “Java Message Service™,” Version 1.0.1, October 5, 1998.

SonicMQ — The Role of Java Messaging and XML in Enterprise Application Integration

6 © 1999 Hurwitz Group, Inc.

reduce the load on web servers because it is the browser client (not the server) that will take

care of interpreting the tags.

§ Data and data exchange. Server-side XML holds great promise as an open standard for

B2B data exchange. For use in data description, XML tags can be used to specify information

content rather than how information is to be displayed. XML organizes data hierarchically in a

manner that can be completely specified. This lets XML parsers interpret the data

appropriately.

Data exchange can likewise be made easier with XML and DTDs. A validating XML parser

can take a DTD and automatically check the syntax of a document and enforce business

rules. The advantage is that developers no longer need to write customer application logic

(extra code) for describing data. For example, enterprises can cut system administration costs

by using XML-based technologies to describe and manipulate application configuration files.

XML, DOM, Middleware, and EAI

The Document Object Model (DOM) specification defines a programmatic interface for XML

and HTML. This interface is platform- and language-neutral. It allows programs and scripts to

dynamically access and update the content, structure, and style of documents. Vendors can

support DOM as an interface to their proprietary data structures and APIs, and content authors

can write to the standard DOM interfaces rather than product-specific APIs. These features

allow developers to create standard interfaces for existing systems.

XML and DOM are emerging as EAI enablers because they can also be used to simplify data

transformation and portability. Web integration servers can support EAI by extracting business

data from systems and translating that data into XML. Once the data is in the normalized form of

XML, it can be more easily interpreted.

Many ERP (PeopleSoft, SAP) and database (Oracle, IBM, and Sybase) vendors are providing

XML interfaces that will promote data exchange in XML.

XML, Java, Messaging, and JMS

Since March 1999, efforts have been underway to develop a Java standard extension for XML.

This extension will be a Java API. It will provide XML-specific features for developing XML-

based services and applications.

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 7

XML is also an important part of the Java2 Platform, Enterprise Edition (J2EE). The J2EE

includes XML as an enabler of B2B information exchange. For synchronous data messaging,

Enterprise JavaBeans can be used to create a business service object. Related XML content can

be sent using JavaServer Pages (JSP) technology. For asynchronous data messaging, JMS is the

service of choice.

Java, Middleware, and EAI

The Java platform supports data exchange through a large set of middleware services (databases,

transaction processing (TP) monitors, asynchronous messaging systems, ORBs). Because of

Java’s platform independence and the availability of middleware services, it is turning into a good

environment for building EAI applications.

Furthermore, EAI often requires developers to access middleware services used in non-Java-

based environments. XML can represent Java object data across different middleware services.

The XML language thus can provide a data-centric method for getting disparate systems to

interoperate. CORBA, on the other hand, uses a process-oriented method to achieve

interoperability. But it is not always possible to use CORBA when a loosely coupled architecture

is desired, and implementing CORBA may prove too complex for many installations. In these

cases, XML can be used to describe the state of Java objects as they pass in and out of the Java

Virtual Machine (JVM).

PROGRESS SONICMQ™

SonicMQ from Progress Software is a 100% Java-based messaging service that supports both

point-to-point and publish/subscribe messaging paradigms. SonicMQ is one of the first full

implementations of the JMS specification. The product not only complies with the latest version of

JMS but goes beyond the minimum set of features called out in the JMS Specification (1.0.1,

10/5/98).

Most importantly, SonicMQ supports the XML standard data format. Progress has added other

enhancements to the product to ensure high performance, reliability, flexibility, and ease of use.

§ High performance. In multi-user environments, increased workload can degrade

performance. SonicMQ offers multiple broker support and lets multiple servers be clustered.

Workload can be shared across a server cluster.

SonicMQ — The Role of Java Messaging and XML in Enterprise Application Integration

8 © 1999 Hurwitz Group, Inc.

SonicMQ also features push technology to guarantee event notification to all subscribers.

This eliminates the overhead incurred when subscribers continuously poll a repository for

event information.

Asynchronous reply lets client subscribers continue processing while waiting for a reply. This

capability is especially useful in business environments with mobile users who may be offline

when messages are sent.

§ Reliability. Reliability for a message service means ensuring that messages do in fact arrive

at their intended destinations. SonicMQ offers built-in security (authorization, access control,

digital certificates, encryption), fault tolerance through persistent messaging, and

transactional support – all features that ensure data and message integrity.

§ Flexibility. In addition to supporting both Point-to-Point and Publish/Subscribe messaging,

SonicMQ extends the JMS message types to include XML. This gives developers more

options for address messaging. Developers can also customize message delivery: client

applications can specify a particular Quality of Service (QoS), such as reliable/non-persistent

or guaranteed/persistent.

§ Ease of use. Usability is a key requirement for installing and maintaining any messaging

system. SonicMQ offers both character-based and GUI-based administrative functions for

monitoring message traffic.

To promote ease of use in message addressing, SonicMQ supports subject-based as well as

hierarchical namespace addressing methods. Messages can be addressed by subject or

content. For the Publish/Subscribe paradigm, topics can be defined hierarchically. This allows

messages to be sent to specific destinations, which can be either topics or subtopics.

SonicMQ also frees up developers from having to manage the network infrastructure. The

product takes care of socket and port management, protocols, semantics, and message

transport mechanisms.

DIFFERENTIATORS

How does SonicMQ compare to other JMS implementations? First, it provides a compelling set of

enhancements to ensure high performance and reliability. Secondly, it includes “native” XML

support. (It ships with the IBM XML parser.) Third, costly add-ons are not needed to get a full,

JMS-compliant messaging system up and running — the SonicMQ Developer Edition, with

support for five clients on Windows NT, is free. Finally, Progress Software stands behind the

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 9

product: high performance and reliability have been the hallmarks of Progress product lines for

many years.

THE PROGRESS ROAD MAP

Future Enhancements

Progress is committed to supporting SonicMQ and plans to add the following features in future

releases:

§ Additional platform support

§ Interfaces to other messaging protocols, such as IBM’s MQSeries, Microsoft Message

Queue (also known as MSMQ)

§ LDAP support

§ Enhanced support for other clients (4GLs, C/C++)

§ More support for XML

§ Hot swap between brokers (failover and improved reliability)

Role of SonicMQ in Progress Software's Product Lines

SonicMQ is scheduled to be integrated into the next release of the Progress Apptivity Application

Server (code-named “Vader”). Embedded in Vader, SonicMQ will provide the messaging

infrastructure needed to support the EJB standard.

SonicMQ technology, including support for JMS and XML, is the cornerstone for bringing together

the Progress Apptivity and 4GL product lines. By uniting these product lines, Progress is working

toward its Universal Application Architecture (UAA), with support for Java, 4GL, COBOL, and

C++ applications.

SonicMQ — The Role of Java Messaging and XML in Enterprise Application Integration

10 © 1999 Hurwitz Group, Inc.

CASE STUDY: CHANNELINX.COM

ChanneLinx.com is a small, privately held ASP and ISV, headquartered in Greenville, SC.

ChanneLinx is a B2B enabler. Its products include eLinx™, an electronic catalog that lets vendors

present their products and services over the Internet; OrderLinx, which supports e-Commerce and

integrates with vendors’ back-end systems; and a new XML transaction processor and translator,

called EIX.

ChanneLinx has used an early-release version of SonicMQ for the following purposes:

§ Within an enterprise, as a queuing mechanism to exchange data (with the event-based

publish/subscribe paradigm)

§ Outside an enterprise, in a hosted environment, to exchange data in a supply chain

§ In a peer-to-peer environment, when one application requests information from another

application through the queue

According to Michael Quattlebaum, Director of R&D at ChanneLinx, the company chose

SonicMQ because it needed to ensure reliability and cross-platform interoperability for messaging

within its product line. Other products that ChanneLinx considered did not offer the same QoS

that SonicMQ provides. Originally, the company planned to write its own JMS implementation but

decided that SonicMQ fit its messaging requirements and supported XML as well. The

combination of JMS and XML support made it unnecessary for ChanneLinx to bring in a third-

party XML parser.

Prior to using SonicMQ, ChanneLinx only used the point-to-point (which they refer to as “peer-to-

peer”) messaging paradigm. By adopting SonicMQ, the company has broadened its support of

messaging paradigms to include publish/subscribe. In new product releases of eLinx, the company

will use publish/subscribe to publish an event to the message queue (for example, to announce the

availability of a new document).

SonicMQ has delivered high performance, reliability, and ease of use to ChanneLinx. The

company was able to get a proof-of-concept messaging system up and running within a day.

Exposure to the SonicMQ’s publish/subscribe support led them to change and improve the

functionality of their flagship catalog product, eLinx.

Progress Software Corporation

© 1999 Hurwitz Group, Inc. 11

CONCLUSION

What provides the foundation for success in today’s e-Commerce marketplace?

Certainly, one of the building blocks is a computing infrastructure that supports fast and reliable

data exchange. A standards-based, interoperable messaging service can provide the core for

middleware services, both within an enterprise and B2B. But a message service on its own cannot

ensure that disparate systems will work with each other — companies need to be sure that their

data formats are compatible. MOM products are needed that can combine services like JMS with

data format standards, such as XML.

For organizations that need to interconnect disparate systems for e-Business, Progress Software’s

SonicMQ product is one of the first JMS implementations that can meet this requirement.

PROGRESS SOFTWARE CORPORATION
14 Oak Park
Bedford, MA 01730
Phone: 800-477-6473
www.progress.com

