g fX :2 www.ardiri.com

v1.0 Leaving our mark on tomorrow’s technology, today.

e Helio Computing Platform

Introduction i e

gfx is a replacement graphics application programmer interface (API) for the Helio Computing
Platform. The gfx library provides developers with optimized graphics routines; low-level window
management (off-screen windows, copy routines, clipping) and font management (string
management, custom font support).

Cube3D, a perspective cube rotation demonstrates

how a developer can use the gfx library to perform
advanced animations and provide a very professional @

-

= The source code is available for
educational purpose only and
shall not be redistributed or
rodified without the consent of
the original authar.

Interested in developing for the |:|

WIREFRAME CUEE

Cube3lis a simple wireframe
cube dernonstration that uses
perspective geometry for the
Helio Cornputing Platform.

SEDI

© 2000 Aaron Ardiri

look and feel to their Helio applications. It has been
included in the gfx distribution (with sources), and is
also available at the following website: © 2000 Raron Ardiri

Helio Computing Platform?

http:f fwww ardiri.coms

Happy Hacking! =
© 2000 Aaron Ardiri

http://www.ardiri.com/index.cfm?redir=helio&subcat=cube3D

Using the gfx library is simple; include the gf x. h header file in your project and link to the gf x. a
library. The graphics library is compatible with all versions of the vt-os, just write your code, and link it
to the gf x. a library — and everything should be sweet (see Cube3D demo for an example).

Application Programmer Interface

The gfx library, although simple, requires a bit of an understanding of some fundamental low-level
graphics education in order to use. The following is taken from the gf x. h header file, and explained in
a bit more detail with examples.

afx Version

#defi ne gfx_beta 0x0000
#def i ne gf x_versionl 0x0100

SHORT G xGet Version();

In order to maintain compatibility with all third party applications, and since this library is to be
improved over time, it is important to keep the version of the graphics library currently available.
Future revisions of the gfx library will define new version constants that will increase in value. If a
routine requires a particular version of the library, this value can determine if it is available or not.

Initialization
voi d Gxlnitialize();

The gfx library must be initialized before it is used — it is not part of the vt-os, and requires
initialization before any graphics routines can actually be used. Failure to initialize the gfx library may
result in device crashes and instability.

This routine can be placed in the I ni t Appl i cati on() function code block.

g fX :2 www.ardiri.com

v1.0 Leaving our mark on tomorrow’s technology, today.

Windows

t ypedef struct

{
SHORT wi dt h;
SHORT hei ght ;
WORD nenfi ze;
void *menory;
} & xXW ndow;

All graphical operations are performed to an off-screen (or LCD) window buffer. The definition is
simple, provide the width, height, size of the memory chunk and a reference to the 4bpp bitmap
memory chunk, and a window is created.

A window can be manually created as follows:

G xW ndow *wi ndow
wi ndow >wi dt h

wi ndow >hei ght

wi ndow >nenti ze

wi hdow >nmenory

(G xW ndow *) pmal | oc(si zeof (& xXW ndow)) ;
bi t mapOOW dt h;

bi t map0O0OHei ght ;

bi t map00Si ze;

(void *)bitmap00;

And disposed of as follows:
pfree(w ndow) ;

Once a window is created, various operations can be performed on it. Off-screen windows can be
initialized and cleaned up using the following routines. Creating off-screen windows allow for double
buffering (animations) and other graphical effects.

G xXW ndow *f xCr eat eW ndow(SHORT wi dt h,
SHORT hei ght) ;
voi d G xDi sposeW ndow(G xW ndow *wi ndow) ;

These routines perform all the necessary memory allocation and de-allocation. All windows created
using the G xCr eat eW ndow() routine should be removed using the G xDi sposeW ndow() routine.

voi d & xSet Dr awW ndow(G xXW ndow *wi ndow) ;
G xXW ndow * &f xGet Dr awW ndow() ;
G xXW ndow *f xGet Di spl ayW ndow() ;

The gfx library determines which window it should perform its operations on by keeping track of the
active “draw window”. On initialization, the default draw window is the LCD screen itself. This window
is been created within the gfx library, and can be obtained with the G xGet Di spl ayW ndow() routine.

Window Routines

typedef enum

{

gf xPai nt = 0, Il x =y

of xMask, Il X =x &~y
of xI nvert, Il x =x "™y
gf xQverl ay Il x =x]y

} & xDr awOper at i on;

g fX :2 www.ardiri.com

v1.0 Leaving our mark on tomorrow’s technology, today.

t ypedef struct

{
SHORT x;
SHORT vy;

} & xPosition;

t ypedef struct

{
G xPosition toplLeft;
G xPosition extent;
} & xRegi on;
t ypedef enum
{
ogf x_white = 0, /1 0000b
of x_lgray = 5, /1 0101b
gf x_dgray = 10, /1 1010b
gf x_black = 15 /1 1111b
} & xCol or;
voi d & xd ear W ndow & xXW ndow *w ndow) ;
voi d & xFi | | Regi on(& xXW ndow *wi ndow, G xRegi on *regi on, G xCol or col or);

These routines provide the developer with the ability to fill or clear the contents of a specific graphics
window. A region is a rectangle definition, comprising of a top left co-ordinate, and an extent (width,
height). Although the gfx library supports 16 shades of gray, only four are defined.

voi d G xCopyRegi on(& xXW ndow *srcW n, G xW ndow *dst W n,
G xRegi on *regi on, SHORT x, SHORT y, G xDrawQperation node);

Inter-window copying is vital for animations and the gfx library provides support for a number of
copying modes. Data can be overlayed, masked, inverted or simply copied from the source window
(area defined by region) to the destination window at the co-ordinate specified.

voi d G xResetd i p();
voi d G xSet d i p(&f xRegi on *region);
voi d G xCGetd i p(&f xRegi on *region);

Window clipping is supported, and can be obtained, set or reset using the above functions. The
clipping is implemented in the gfx library at a very low level; so all routines comply with the clipping
boundaries.

voi d & xSet Pi xel (SHORT x, SHORT y, G xCol or color);
& xCol or & xCGet Pi xel (SHORT x, SHORT vy);
voi d G xDr awLi ne(SHORT x1, SHORT y1, SHORT x2, SHORT y2, G xCol or color);

Elementary ©

voi d G xDrawstri ng(BYTE *string, SHORT |en,
SHORT x, SHORT y, G xDrawOperati on node);

The above routine provides the developer with the ability to draw a simple text message to the current
display window. The string is drawn using the currently active font (see below) and is performed using
the window copying mechanism. Obtaining non black and white text can be done with a combination
of window operations.

g fX :2 www.ardiri.com

v1.0 Leaving our mark on tomorrow’s technology, today.

Fonts Routines

#def i ne gf x_maxFont s 128 /1 128 fonts, MAX
#def i ne gf x_f ont Char Count 0x80
#def i ne gf x_font Char Mask Ox7F

typedef enum

{
of x_hel i oSmal | Font = 0, /1 vt-os
gf x_pal nosNor nal Font = 16, /1 pal nos
gf x_pal nosBol dFont ,
gf x_firstUserDefinedFont = 32 /1 user defined?
} & xFont;
voi d & xDef i neFont (G xFont font, SHORT fontSize, BYTE *font Dat a,

SHORT font WnW dth, SHORT font W nHei ght, SHORT *font W dt hs);

The gfx library provides three basic fonts in its current state. The gfx library currently only supports
the ASCII character set (128 characters). It is possible to define your own fonts, as is done with the
definition of window. Providing support for larger font sets can be done using extra font definitions.

voi d G xSet Font (&f xFont font);
G xFont G xGet Font () ;

The G xDr awSt ri ng() routine uses the active font that has been defined. It can be adjusted.

SHORT & xCGet WOr dW ap(BYTE *string, SHORT maxPi xel s);
SHORT & xCGet Font Hei ght () ;

SHORT & xCGet Char sW dt h(BYTE *str, SHORT |en);

SHORT G&f xCGet Char W dt h(BYTE chr);

To managing the presentation of text, various font management routines have been provided.
G xGet Wr dW ap() determines how many characters can be displayed in a specific pixel width,
clipping the string on word boundaries. The other routines can be used to center text and adjust high
offsets.

Termination

voi d G xTerm nate();

The gfx library must be terminated on exit of the application to de-allocate any resources it may be
using during the execution of the application. Failure to terminate the gfx library may result in device
crashes and instability.

This routine can be placed in the Qui t Appl i cati on() function code block.

Licensing

The gfx library is the property of Aaron Ardiri.

Non-commercial usage:

The gfx library can be freely used within applications that are non-commercial. An acknowledgement
or thanks must be provided in the README documentation for the use of this product, providing a link
to the www.ardiri.com website.

g fX :2 www.ardiri.com

v1.0 Leaving our mark on tomorrow’s technology, today.

Commercial usage / Source Code Licensing:

A lot of time and effort was placed in the development of the gfx library. In the event you wish to use
the gfx library in a commercial application or obtain access to the source code of the library you must
contact Aaron Ardiri directly for the negotiation of licensing by sending an email to aaron@ardiri.com

Cheers!

/l az
aaron@ardiri.com
http://www.ardiri.com/

