

gfx
 v1.0

www.ardiri.com
Leaving our mark on tomorrow’s technology, today.

Helio Computing Platform

Introduction

gfx is a replacement graphics application programmer interface (API) for the Helio Computing
Platform. The gfx library provides developers with optimized graphics routines; low-level window
management (off-screen windows, copy routines, clipping) and font management (string
management, custom font support).

Cube3D, a perspective cube rotation demonstrates
how a developer can use the gfx library to perform
advanced animations and provide a very professional
look and feel to their Helio applications. It has been
included in the gfx distribution (with sources), and is
also available at the following website:

http://www.ardiri.com/index.cfm?redir=helio&subcat=cube3D

Using the gfx library is simple; include the gfx.h header file in your project and link to the gfx.a
library. The graphics library is compatible with all versions of the vt-os, just write your code, and link it
to the gfx.a library – and everything should be sweet (see Cube3D demo for an example).

Application Programmer Interface

The gfx library, although simple, requires a bit of an understanding of some fundamental low-level
graphics education in order to use. The following is taken from the gfx.h header file, and explained in
a bit more detail with examples.

gfx Version

#define gfx_beta 0x0000
#define gfx_version1 0x0100

SHORT GfxGetVersion();

In order to maintain compatibility with all third party applications, and since this library is to be
improved over time, it is important to keep the version of the graphics library currently available.
Future revisions of the gfx library will define new version constants that will increase in value. If a
routine requires a particular version of the library, this value can determine if it is available or not.

Initialization

void GfxInitialize();

The gfx library must be initialized before it is used – it is not part of the vt-os, and requires
initialization before any graphics routines can actually be used. Failure to initialize the gfx library may
result in device crashes and instability.

This routine can be placed in the InitApplication() function code block.

gfx
 v1.0

www.ardiri.com
Leaving our mark on tomorrow’s technology, today.

Windows

typedef struct
{
 SHORT width;
 SHORT height;
 WORD memSize;
 void *memory;
} GfxWindow;

All graphical operations are performed to an off-screen (or LCD) window buffer. The definition is
simple, provide the width, height, size of the memory chunk and a reference to the 4bpp bitmap
memory chunk, and a window is created.

A window can be manually created as follows:

GfxWindow *window = (GfxWindow *)pmalloc(sizeof(GfxWindow));
window->width = bitmap00Width;
window->height = bitmap00Height;
window->memSize = bitmap00Size;
window->memory = (void *)bitmap00;

And disposed of as follows:

pfree(window);

Once a window is created, various operations can be performed on it. Off-screen windows can be
initialized and cleaned up using the following routines. Creating off-screen windows allow for double
buffering (animations) and other graphical effects.

GfxWindow *GfxCreateWindow(SHORT width,
 SHORT height);
void GfxDisposeWindow(GfxWindow *window);

These routines perform all the necessary memory allocation and de-allocation. All windows created
using the GfxCreateWindow() routine should be removed using the GfxDisposeWindow() routine.

void GfxSetDrawWindow(GfxWindow *window);
GfxWindow *GfxGetDrawWindow();
GfxWindow *GfxGetDisplayWindow();

The gfx library determines which window it should perform its operations on by keeping track of the
active “draw window”. On initialization, the default draw window is the LCD screen itself. This window
is been created within the gfx library, and can be obtained with the GfxGetDisplayWindow() routine.

Window Routines

typedef enum
{
 gfxPaint = 0, // x = y
 gfxMask, // x = x & ~y
 gfxInvert, // x = x ^ y
 gfxOverlay // x = x | y
} GfxDrawOperation;

gfx
 v1.0

www.ardiri.com
Leaving our mark on tomorrow’s technology, today.

typedef struct
{
 SHORT x;
 SHORT y;
} GfxPosition;

typedef struct
{
 GfxPosition topLeft;
 GfxPosition extent;
} GfxRegion;

typedef enum
{
 gfx_white = 0, // 0000b
 gfx_lgray = 5, // 0101b
 gfx_dgray = 10, // 1010b
 gfx_black = 15 // 1111b
} GfxColor;

void GfxClearWindow(GfxWindow *window);
void GfxFillRegion(GfxWindow *window, GfxRegion *region, GfxColor color);

These routines provide the developer with the ability to fill or clear the contents of a specific graphics
window. A region is a rectangle definition, comprising of a top left co-ordinate, and an extent (width,
height). Although the gfx library supports 16 shades of gray, only four are defined.

void GfxCopyRegion(GfxWindow *srcWin, GfxWindow *dstWin,
 GfxRegion *region, SHORT x, SHORT y, GfxDrawOperation mode);

Inter-window copying is vital for animations and the gfx library provides support for a number of
copying modes. Data can be overlayed, masked, inverted or simply copied from the source window
(area defined by region) to the destination window at the co-ordinate specified.

void GfxResetClip();
void GfxSetClip(GfxRegion *region);
void GfxGetClip(GfxRegion *region);

Window clipping is supported, and can be obtained, set or reset using the above functions. The
clipping is implemented in the gfx library at a very low level; so all routines comply with the clipping
boundaries.

void GfxSetPixel(SHORT x, SHORT y, GfxColor color);
GfxColor GfxGetPixel(SHORT x, SHORT y);
void GfxDrawLine(SHORT x1, SHORT y1, SHORT x2, SHORT y2, GfxColor color);

Elementary ☺

void GfxDrawString(BYTE *string, SHORT len,
 SHORT x, SHORT y, GfxDrawOperation mode);

The above routine provides the developer with the ability to draw a simple text message to the current
display window. The string is drawn using the currently active font (see below) and is performed using
the window copying mechanism. Obtaining non black and white text can be done with a combination
of window operations.

gfx
 v1.0

www.ardiri.com
Leaving our mark on tomorrow’s technology, today.

Fonts Routines

#define gfx_maxFonts 128 // 128 fonts, MAX!
#define gfx_fontCharCount 0x80
#define gfx_fontCharMask 0x7F

typedef enum
{
 gfx_helioSmallFont = 0, // vt-os
 gfx_palmosNormalFont = 16, // palmos
 gfx_palmosBoldFont,
 gfx_firstUserDefinedFont = 32 // user defined?
} GfxFont;

void GfxDefineFont(GfxFont font, SHORT fontSize, BYTE *fontData,
 SHORT fontWinWidth, SHORT fontWinHeight, SHORT *fontWidths);

The gfx library provides three basic fonts in its current state. The gfx library currently only supports
the ASCII character set (128 characters). It is possible to define your own fonts, as is done with the
definition of window. Providing support for larger font sets can be done using extra font definitions.

void GfxSetFont(GfxFont font);
GfxFont GfxGetFont();

The GfxDrawString() routine uses the active font that has been defined. It can be adjusted.

SHORT GfxGetWordWrap(BYTE *string, SHORT maxPixels);
SHORT GfxGetFontHeight();
SHORT GfxGetCharsWidth(BYTE *str, SHORT len);
SHORT GfxGetCharWidth(BYTE chr);

To managing the presentation of text, various font management routines have been provided.
GfxGetWordWrap() determines how many characters can be displayed in a specific pixel width,
clipping the string on word boundaries. The other routines can be used to center text and adjust high
offsets.

Termination

void GfxTerminate();

The gfx library must be terminated on exit of the application to de-allocate any resources it may be
using during the execution of the application. Failure to terminate the gfx library may result in device
crashes and instability.

This routine can be placed in the QuitApplication() function code block.

Licensing

The gfx library is the property of Aaron Ardiri.

Non-commercial usage:
The gfx library can be freely used within applications that are non-commercial. An acknowledgement
or thanks must be provided in the README documentation for the use of this product, providing a link
to the www.ardiri.com website.

gfx
 v1.0

www.ardiri.com
Leaving our mark on tomorrow’s technology, today.

Commercial usage / Source Code Licensing:
A lot of time and effort was placed in the development of the gfx library. In the event you wish to use
the gfx library in a commercial application or obtain access to the source code of the library you must
contact Aaron Ardiri directly for the negotiation of licensing by sending an email to aaron@ardiri.com

Cheers!

// az
aaron@ardiri.com
http://www.ardiri.com/

